CHROMIUM-6 DRINKING WATER REGULATION WORKSHOP

April 28, 2015

OUTLINE

- Chromium
- History of the Regulation
- Regulation Impact
- Occurrence in Water Supplies
- Treatment Options
- Non-Treatment Options
- Next Steps

CHROMIUM (Cr)

- Chromic oxide 9th most abundant compound on earth's crust
- Occurs primarily as chromium-3 (CrIII; Trivalent Chromium) or chromium-6 (CrVI; Hexavalent Chromium)
 - CrIII, a required nutrient found in vegetables, fruits, meats, grains and yeast; essential to normal glucose, protein and fat metabolism in humans.
 - CrVI, found in the environment from the erosion of natural chromium deposits.

CHROMIUM (Cr)

- Some isolated industrial sources:
 - Stainless steel, leather tanning, wood preservation, textile dyes and pigments and corrosion protection.
 - Hinkley, CA
 - PG&E operates a compressor station to recompress the natural gas in their transmission pipelines.
 - CrVI was added to the water used in cooling towers to prevent rust in the machinery.
 - The contaminated water was stored in unlined ponds which entered the groundwater.

CHROMIUM REGULATION

- In 1977, the State of California set the State's Maximum Contaminant Level (MCL) for Total Chromium:
 - 0.05 mg/L = 50 ppb
 - Total Chromium = CrIII + CrVI
 - Assumes Total Chromium = CrVI
- 1 ppb = 1/1,000,000,000
- About 1 drop in 250 55 gallon drums
- Equivalent to 3 seconds in 100 years

CHROMIUM REGULATION

- 1977 US Environment Protection Agency (EPA) adopted California's Total Chromium MCL:
 - 0.05 mg/L = 50 ppb (National MCL)
- 1991 EPA raised the Total Chromium MCL:
 - o.1 mg/L = 100 ppb (National MCL)
- 2000 Erin Brockovich creates attention to CrVI and prompts legislature to focus on the development of a more stringent CrVI MCL.

CHROMIUM REGULATION

- 2001 Utility agencies in CA begin monitoring for CrVI under CA UCMR
 - UCMR Unregulated Contaminant Monitoring Rule
 - Currently in its third round; UCMR 3
 - The EPA selects 30 contaminants to monitor.
 - The data is used to support the decision to regulate a contaminant in the interest of protecting public health.
- 2001 California Department of Public Health (CDPH) requests that the Office of Environmental Health Hazard Assessment (OEHHA) develop a Public Health Goal (PHG) for CrVI.

CHROMIUM VI REGULATION

- Oct, 2001 Governor signed SB-351 requiring that the CDPH adopt a MCL for CrVI by 1/1/2004.
- Nov, 2001 OEHHA announces intent to develop PHG for CrVI.
- Aug, 2009 OEHHA releases draft PHG at 60 ppt.
 1 ppt = 1 drop in 20 Olympic-sized pools.

CHROMIUM VI REGULATION

- Dec, 2010 OEHHA releases draft PHG at 20 ppt, which is then finalized in July, 2011.
 - With an approved PHG, the CDPH could now begin on setting an MCL for CrVI as required by SB-351 (2001).
 - CDPH is mandated by law to set the MCL as close as "practically and economically feasible" to the State's PHG
- Dec, 2013 Superior Court rules in favor of NRDC/EWG and requires that CDPH set an MCL by Aug 31, 2013.
- Aug, 2013 CDPH sets CrVI MCL at 10 ppb.

CHROMIUM VI REGULATION

- California Administrative Procedure Act allows up to one year to finalize new regulations (i.e. Aug 23, 2014)
- CDPH dismisses most of 20,000 comments received.
 - CDPH underestimated the occurrence and compliance costs of CrVI.
 - Ex: CDPH database showed that the City of Banning only had 1 sources that would exceed the MCL, when in reality there are 7 sources.
- On June 20, 2014 water agencies received a letter from the CDPH stating that the new MCL for CrVI would become effective on July 1, 2014.

IMPACT OF NEW MCL

- Estimated Statewide Costs:
 - Capital Costs: \$4.1 Billion
 - Annual O&M Costs: \$231 Million
- Initial monitoring must begin on or before January 1, 2015.
 - Monitoring is required for each well.
- Quarterly monitoring is required when the MCL is exceeded.
 - Compliance is determined by whether a running annual average exceeds the MCL.
- It is still unclear what the State will require if sources are in noncompliance.

OCCURRENCE IN THE U.S.

OCCURRENCE STATE WIDE

LOCAL OCCURRENCE

MONITORING

WELLS	AVG CrVI ppb (2 Quarters)	AVG PRODUCTION AC-FT/YR (2010-2014)
C2	17.0	143
C3	15.5	660
C4	13	530
C6	13	463
M3	9.5	394
M10	10.5	158
M11	12.5	420
M12	22.5	236
		$\Sigma = 3,004$

• 2010-2014 City Wide Average Production = 8,500 AC-FT/YR

TREATMENT OPTIONS BEST AVAILABLE TECHNOLOGIES

• Weak Base Anion Exchange (WBA)

- Strong Base Anion Exchange (SBA)
- Reduction Coagulation Filtration (RCF)

WEAK BASE ANION EXCHANGE (WBA)

- Reduces CrVI to CrIII.
- WBA resin is proposed to be used as disposable media.
- Resin life is dependent from site to site.
- It may be required to dispose media as hazardous waste.

STRONG BASE ANION EXCHANGE (SBA)

- Reduces CrVI to CrIII.
- Operated with periodic regeneration using high concentration of NaCl.
- Yields a brine waste that can require treatment to precipitate the hazardous chromium component from the brine before it can be disposed.
- Disposal of Brine can be challenging and expensive.

REDUCTION, COAGULATION, FILTRATION (RCF)

- Similar to typical coagulation/filtration processes used in water treatment.
- Added reductant used to convert CrVI to CrIII.
- Creates iron/chromium floc which is removed by filtration.
- Backwash water disposal.

TREATMENT COSTS (CAPITAL)

TREATMENT COSTS (O&M; \$/YEAR)

NON-TREATMENT OPTION

- Dynamic Well Profiling and CrVI Isolation.
 - Process of determining at which depths the highest levels of CrVI are entering the well.
 - Blank casings to reduce CrVI intrusion.
 - Possible loss of production in the well.
- Profiling cost = \$30,000 per well (\$210,000)
- Construction cost = \$200,000 per well (\$1.4 M)
- BCVWD has recently completed profiling of shared wells and has proposed to modify the well casing.

NON-TREATMENT OPTION

- Converting wells to non-potable wells.
 - Will require drilling of additional wells to make up for the loss of production.
- Cost for a new well:
 - Drill/Const/Test/Equip: \$1,500,000
 - Plus property acquisition costs.

NEXT STEPS

- Perform Dynamic Well Profiling of wells and provide information to City Council (4-6 months).
- Develop a compliance plan.
 - Treatment (12-18 months)
 - Pilot testing
- Develop funding plan.
- Initiate design, environmental and right-of-way.
 - Treatment (12-24 months)
 - Profiling/Isolation (3 months)
 - New Wells (8-12 months)
- Begin Construction.
 - Treatment (12-30 months)
 - CrVI Well Isolation (10-12 months)
 - New Wells (6-8 months)

SB-385 (Hueso)

- What it does:
 - Allows a public water system to apply for a limited period of time to achieve compliance.
 - Requires water systems to prepare and submit a compliance plan.
 - Requires that water customers be informed of compliance progress.
- What it doesn't do:
 - The bill does not delay compliance efforts.
 - The bill does not exempt any public water systems from compliance with the MCL.
 - The bill does not modify the MCL of 10 ppb.

QUESTIONS?